PriorityX¶
Entity prioritization and escalation detection using GLMM statistical models
Installation¶
Quick Start¶
import pandas as pd
import priorityx as px
df = pd.read_csv("data.csv")
# Default: volume x growth (single GLMM)
results, stats = px.fit_priority_matrix(
df,
entity_col="service",
timestamp_col="date",
temporal_granularity="quarterly",
)
# Returns: entity, x_score, y_score, count, quadrant
px.plot_priority_matrix(results, entity_name="Service", save_plot=True)
Custom Axes¶
# Custom Y axis: volume × resolution_days (two GLMMs)
results, _ = px.fit_priority_matrix(
df,
entity_col="service",
timestamp_col="date",
y_metric="resolution_days",
)
# Custom both axes: disputed_amount × paid_amount
results, _ = px.fit_priority_matrix(
df,
entity_col="service",
timestamp_col="date",
x_metric="disputed_amount",
y_metric="paid_amount",
)
Composite Indices¶
# Add entity metrics
metrics = px.aggregate_entity_metrics(
df,
entity_col="service",
duration_start_col="opened_at",
duration_end_col="closed_at",
primary_col="exposure",
secondary_col="recovery",
)
results = results.merge(metrics, left_on="entity", right_on="service", how="left")
# Add weighted indices: RI (Risk), SQI (Service Quality), EWI (Early Warning)
results = px.add_priority_indices(
results,
volume_col="count",
growth_col="y_score",
severity_col="total_primary",
resolution_col="mean_duration",
recovery_col="secondary_to_primary_ratio",
)
# Top priority entities
top_risks = results.nlargest(10, "EWI")
Features¶
- GLMM-based priority matrix (Q1–Q4) with entity-level intercept/slope insights
- Priority-based transition timeline (Crisis / Investigate / Monitor / Low) with spike markers (
*X,*Y,*XY) - Cumulative movement tracking and trajectory visualizations
- Transition driver analysis that surfaces top subcategories causing quadrant shifts
- Deterministic seeding option for reproducible GLMM runs (set
PRIORITYX_GLMM_SEED)
Use Cases¶
- Consumer complaint prioritization (financial services, regulatory)
- IT incident triage
- Software bug prioritization
- Compliance violation monitoring
- Performance monitoring and escalation detection
Next Steps¶
- Quick Start Guide — Full walkthrough
- API Reference — Function signatures and parameters
- Methodology — Statistical background